- Without dramatic reductions in greenhouse-gas emissions, most of the planet’s land-based ecosystems — from its forests and grasslands to the deserts and tundra — are at high risk of ‘major transformation’ due to climate change.
- “If we allow climate change to go unchecked, the vegetation of this planet is going to look completely different than it does today, and that means a huge risk to the diversity of the planet,” said Overpeck, who conceived the idea for the study with corresponding author Stephen T. Jackson of the U.S. Geological Survey.
University of Arizona new release here; Read ScienceDaily article here
Additional new coverage: NPR, Washington Post, The Atlantic, Courthouse News
…..The researchers used fossil records of global vegetation change that occurred during a period of post-glacial warming to project the magnitude of ecosystem transformations likely in the future under various greenhouse gas emissions scenarios.
They found that under a “business as usual” emissions scenario, in which little is done to rein in heat-trapping greenhouse-gas emissions, vegetation changes across the planet’s wild landscapes will likely be more far-reaching and disruptive than earlier studies suggested….
….”We’re talking about global landscape change that is ubiquitous and dramatic,” Overpeck said. “And we’re already starting to see it in the United States, as well as around the globe.”
…the new study, which took five years to complete, is the first to use paleoecological data — the records of past vegetation change present in ancient pollen grains and plant fossils from hundreds of sites worldwide — to project the magnitude of future ecosystem changes on a global scale….
Connor Nolan, Jonathan T. Overpeck, Judy R. M. Allen, Patricia M. Anderson, Julio L. Betancourt, Heather A. Binney, Simon Brewer, Mark B. Bush, Brian M. Chase, Rachid Cheddadi, Morteza Djamali, John Dodson, Mary E. Edwards, William D. Gosling, Simon Haberle, Sara C. Hotchkiss, Brian Huntley, Sarah J. Ivory, A. Peter Kershaw, Soo-Hyun Kim, Claudio Latorre, Michelle Leydet, Anne-Marie Lézine, Kam-Biu Liu, Yao Liu, A. V. Lozhkin, Matt S. McGlone, Robert A. Marchant, Arata Momohara, Patricio I. Moreno, Stefanie Müller, Bette L. Otto-Bliesner, Caiming Shen, Janelle Stevenson, Hikaru Takahara, Pavel E. Tarasov, John Tipton, Annie Vincens, Chengyu Weng, Qinghai Xu, Zhuo Zheng, Stephen T. Jackson. Past and future global transformation of terrestrial ecosystems under climate change. Science, 2018; 361 (6405): 920 DOI: 10.1126/science.aan5360